If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-2r-9=0
a = 1; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·1·(-9)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{10}}{2*1}=\frac{2-2\sqrt{10}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{10}}{2*1}=\frac{2+2\sqrt{10}}{2} $
| H(t)=-16^2+4+80 | | -15+6k=k+8k | | 7.4x+3-9=6+7.4 | | 11x^2+29x-12=0 | | 8x+9x-41+17=180 | | 19y=18y+15 | | 8x-26=6+6x | | 20=-16t^2+144 | | 3x=(1/4)x^2+5 | | 2x-10=20+4 | | 29x-28x=0.0855 | | -x-1=1-x | | X^2-3d=0 | | 5n+5=80+5n | | Y=3/x-10 | | -H(t)=16t^2+80+4 | | -8=-1/2x+-55 | | 9i-27=12-4i | | 14y−2=−2(−7y+1) | | 4a=3(a+1)+4 | | √x+14−√2x+5=1 | | -9x-30=5x-6 | | 12x^2+58x+56=0 | | 4+n=4-8n | | 5(x+3)=7x+7-2x+8 | | W(9)=-2n-2 | | 3y^2-8y+35=0 | | 2x+3+5x-10=63 | | -6=u/4-2 | | 3x+5=6×-14 | | 0.5x-5=0.1(x=30) | | h+15=h-34 |